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This paper investigates the stability of the boundary layer on a flat plate washed by 
helium at high Mach number (Ma = 8-25). To determine the profiles of velocity and tempera- 
ture of the unperturbed flow one must take into account the interaction of the boundary lay- 
er with the external flow. To solve this problem of the linear theory of stability of com- 
pressible flows we have constructed a pseudospectral method with which, using a comparative- 
ly small number of basic functions to model an approximate solution, we can calculate stabil- 
ity characteristics over a wide range of Reynolds and Mach numbers. 

We have compared the stability characteristics obtained in one case for profiles com- 
puted with interaction and for another case for profiles of the Blasius similarity solution. 
We found that for Ma = 20 allowing for interaction leads to an increase of the critical Rey- 
nolds number Rxc by more than a factor of two. 

In spite of an increasing interest in stability of hypersonic boundary layers [1-7] the 
very high Mach number region (Ma > i0) has evidently not been investigated adequately. The 
basic reason is that most papers study boundary layer stability in air, considered as a per- 
fect gas. The range of Ma, for which air can be so considered is very limited, both for nat- 
ural flight and for wind tunnels, which means that one should plan to study the influence of 
chemical reactions in the boundary layer, and also the influence of surface catalyticity on 
boundary layer stability. A number of papers [8-10] have made progress in this direction, 
but the solution of the problem is far from complete. 

On the other hand, in helium tunnels one can achieve very high values of Ma and R x with- 
out condensation. One would expect that the characteristic features of purely hydrodynamic 
type observed in a helium tunnel at high M~ would appear also in air, superimposed on fea- 
tures associated with chemical reactions. The use of helium tunnels to study the development 
of instability and transition in the hypersonic boundary layer gives a practical basis for 
investigating boundary layer stability in a perfect gas for Ma > i0. 

In this paper we investigate linear stability of the boundary layer on a flat plate lo- 
cated at zero angle of attack in hypersonic helium flow. We examine only distances from the 
leading edge for which the boundary layer concept can be applied accurately. 

At high M~ the main difference of the boundary layer from the known similarity solution 
at constant pressure comes from interaction of the boundary layer with the external flow 
[llJ. The influence of the entropy layer and the presence of a density discontinuity in the 
external flow are not considered. This approximation limits our study to the regime of weak 

- ~ :/~ i/~ and moderate interaction (X ~ i, X - Ha c~ /R x , ca = Pw~w/P~a, Rx = pauax/~a). How- 
ever, one can expect that some qualitative results carry over to the region of large values 
of the parameter • 

Following the Blasius and Dorodnitsyn-Lees transformations 
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O / ~ q  = u/u~, g = H / H ~  

the boundary layer equations can be written in the form [ii] 
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] (z, 0) = 1' (z, 0) = 0, g (z, 0) -= g~. = eonst, 

1' (z, c~) = g (z, cr =- I. 

Here x and y are the longitudinal and normal coordinates; u is the velocity; H is the total 
enthalpy; p is the density; p is the pressure; D is the viscosity; ~* is the displacement 
thickness; the primes denote differentiation with respect to q; the subscript ~ refers to 
values in the unperturbed flow, e at the outer edge of the boundary layer, and w at the wall. 
We assume that for helium 7 = Cp/CV = 5/3, and Prandtl number is o = 2, D/D~ = (T/T=) m, and 

= 0.647. 

The induced pressure gradient can be determined approximately from the tangent wedge 
formula [11-13] 

vo+' = t + +k ~- ~ + + 7 = p (k), k = M+ ++*22. (2)  

We compute the pressure distribution in the limit M~ + ~, z = 0(i), ~e + 0, e~ § 0, when the 
solution of the problem of Eqs. (i) and (2) depends only on the coordinate z and the tempera- 
ture factor gw (the moderate hypersonic interaction limit). For qualitative investigations 
of the influence of interaction on stability it is appropriate to restrict ourselves to an 
approximate method based on local similarity of solutions of Eq. (i). The essence of the 
method is that the convective terms, equal to zero for z + 0 and z § ~, are put equal to zero 
for the entire interval 0 < z < ~. Then the variable z enters Eqs. (I) and (2) only via the 
parameter $, and from the solution of this problem one can find the dependence F(~) in the 
(7 - 1)/7 < $ < 0 (from strong to weak interaction). Taking into acount the relation ~ = 

?--I z dp and the interaction equations (2) we obtain a boundary problem for an ordinary dif- ,~ p dz 

ferential equation of second order determining ~(~), ~ = inz, ~ e (-~, ~): 

+P +~'~ v _IS + + v) ~ + - + 

e BI'> %, d P  

k = e -+1+ ]/ 'Z (dF d13 + t F - -  ~ 13t) 

( -  ~ ) =  - ( ~  - t ) / v ,  ~ ( ~ )  = 0 .  

From t h e  s o l u t i o n  o f  t h i s  p r o b l e m  we can  o b t a i n  t h e  f u n c t i o n  

p u /, T ~ -- 1'2 
p-2Cz)' u . . . .  = ( B %  - ue Tw gw 

(T is the temperature) and determine the link between z and the hypersonic similarity parame- 

ter X = M~3cml/2/Rxl/2: 

]+ 2 ~ c~ r,+% [ 2 1 ~-~ 

r~+--= M++. ~'+ I '~- t ; ' i +  ++. 
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The profiles of velocity and temperature obtained in the hypersonic approximation (E e = 
s~ = 0) are not uniformly appropriate as M~ + ~. Near the external boundary there is a thin 
region where attenuation of velocity perturbations varies from algebraic to exponential, and 
the temperatures goes to its nonzero value in the external flow. In this region the second 
derivatives of velocity and temperature with respect to the normal coordinate increase with- 
out bound with increase of M~. 

Therefore, to find the profiles we chose the following procedure. The profiles of ve- 
locity and temperature are determined beforehand in the local similarity approximation, i.e., 
as a solution of Eq. (I) without the right-hand sides. However, then there remain the small 
terms ~, se in the equations. The pressure distribution, necessary for finding ee, is found by 
solving the problem in the hypersonic approximation (~ = E e = 0). For small enough Se these 
additions do not noticeably influence the pressure distribution obtained in the hypersonic 
approximation, and lead to the correct behavior of the profiles near the outer edge of the 
boundary layer. The temperature and velocity profiles thus found, and also their derivatives, 
are used subsequently to compute the stability characteristics. 

We determine the stability characteristics in the locally homogenous flow approximation. 
We represent small perturbations of velocity, pressure, density, and temperature in the form 
of a Tollmien-Schlichting wave: 

F(x,  y, z, t) = {~', ~', ~',  p' ,  p', ~ ' }  = 

= {ul(g), avl(g), tv~(g), Pl(Y), 91(Y), Tl(g)}exp [i(ax + ~ z -  act)], (3)  

where v t, w ~ are perturbations of the normal and transverse velocity components. The func- 
tions are referenced to their values in the incident stream: length to L = x/Rx z/2, and time 
to L/u~. By linearizing the Navier-Stokes equations and substituting Eq. (3) we come to the 
system of equations of [14]. If the wall is fixed, impermeable, and has high thermal conduc- 
tivity the boundary conditions for y = 0 have the form uz(0) = vz(0) = wz(0) = T~(0) = 0. 
For Tollmien-Schlichting waves moving subsonically relative to the external flow this becomes 
the condition for attenuation of perturbations as y + ~. 

We now investigate the temporal stability for which the parameters of the problem are 
R = (u~p~L/~) I/2, M~, the wave number e and the angle of slope of the wave vector ~ = 
arctan(~/~). We require to find the eigenvalues c and the corresponding eigenfunctions. In the 
computations it is convenient to convert in the equations to the Dorodnitsyn-Lees variable 
~, and thus avoid large gradients in the vicinity of the outer edge of the boundary layer. 
the coefficient of volume viscosity is assumed to be zero. 

The problem of boundary layer ~tability in compressible flows has been investigated in 
many papers. Mack [14] has made a large contribution. The contemporary state of the matter 
is explained in [15, 16]. In our work we propose an efficient new method of solving the 
problem, based on spectral representation of the solution. 

The problem can be formulated in the form 

cX = A X ,  X = {X,,} (n = 0 ,  1 . . . . .  5), 

x,~(q = o) = o (,~ = t ,  2 . . . . .  4),  ( a )  

x ~ ( ~ ) = o  ( ~ = 1 ,  2, . . . ,  5), 

where X= {Xn} = {~]~=0, [(q), v(q), w(q), T(q),p(q) -- (i/T(q))T(q)}; [=u I +w z tan,; v=vz; 

= w I - u I tan~; T = Tz; p = Pz; A = A(R, M~, ~, ~) is a known matrix, including an opera- 
tor to differentiate with respect to ~. 

The problem of Eq. (4) is solved numerically using a modified pseudospectral method 
[17]. Using the substitution of variable ~ = a(l + z)/(l - z) we map the region D e [0, ~) 
into the interval z ~ [-i, i), and here d/d~ = ~(z)(d/dz), <(z) = (i - z)/2a. The approxi- 
mate solution of Eq. (4) is sought in the form 

Q-I 

Q--I 

x~  (z) = 7-t ( i  - z) x o  + (1 - z ~) ~ 2~,qT~ (z) 
q=o 
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TABLE i 
| 

= i8 ,  R = I 0 0 0 ,  o~ = O,OZ~ I 
! Q 

Cmax 

3i 
41 
5i 
71 

,,,,,,,,, 

l~l~ = 25, R = t 700 ,  ==0,02 

0,988i52~i0,00i846 
0,988i52 ~-10,00i980 
0,98815123-~-~i0,00i98ii9 
0,988i5i22@ i0,00198!I8 

t 0,99288-~i0,00233 
0,992773@i0,002068 
0,9927754@i0~0020720 
0.9927748-~ i0,002072i 

[Tq(z) = cos (q arccos z) are Chebyshev polynomials]. It follows from the form of Eq. (5) that 
the boundary conditions are satisfied. 

Each equation of the system (4) is described at the collocation nodes z i = cos(~i/(Q + 
i)), i = i, 2, ..., Q; in addition the last equation (n = 5) is written at the point z = -I. 
As a result we obtain the problem of eigenvalues and eigenvectors for a complex matrix of 
dimension (5Q + I) x (5Q + i). 

The accuracy of computing the approximate solution was evaluated for air and helium for 
the different parameters of the problem M=, R, ~, ~. In all the computations acceptable 
accuracy was achieved for Q ~ 30. Table i shows eigenvalues of the velocity Cma x (with max- 
imum imaginary part) found for helium at high M= (gw = 0.6, ~ = 0, o = 2/3). 

To evaluate the influence of interaction effects at different parameters of the problem 
we made two series of computations: In the first case (INT) in the stability problem we used 
velocity and temperature profiles obtained by the above method, i.e., allowing for interac- 
tion of the boundary layer with the external flow; in the second case (BLS) we used the pro- 
files of the Blasius similarity solution ($ = 0). 

Figure 1 shows neutral stability curves computed for helium at M~ = 18, gw = 0.6, ~ = 0; 
curve 1 corresponds to the case INT, and curve 2 to BLS. As one would expect the largest 
changes occur for small R. 

To allow for interaction leads to an increase in the critical Reynolds number from 
RcBLS = 162 to Rc INT = 235, corresponding to an increase of Rx, c = R by more than a factor 
of two. In addition, there is displacement of the nose of the neutral curve toward the large 
wave number region (ac BLS = 0.018, ac INT = 0.0229). With increase of R the neutral curves 
come together. 

Figure 2 shows the dependence of the increment of the perturbations % = ~ Im (c) on ~ for 
R = 350, M~ = 18, gw = 0.6 for various values of the slope angle (the solid curves correspond 
to the case INT, and the broken curves to BLS). It can be seen that for the flow parameters 
considered the maximum instability occurs for two-dimensional perturbations (~ = 0). It is 
interesting that for a supercritical Reynolds number to allow for interaction in the two-dimen- 
sional case (4 = 0) leads to destabilization (~max INT > %max BLS, %max = max %), and in the 

three-dimensional case for ~ = 30 ~ it leads to stabilization. 

An interesting question is the influence of the temperature factor on flow stability in 
the boundary layer for high M~. The idea was put forward in [2] that in the hypersonic bound- 
ary layer with increase of M= the influence of the temperature factor and the pressure gradi- 
ent on the stability characteristics diminishes. This is based on removal of the critical 
layer still further from the wall to the outer edge of the boundary layer. 
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Figure 3 shows, for M= = 8 and 18 (a and b) the dependence of the increment of pertur- 
bation growth of I on ~ for R = 500, ~ = 0 for various values of gw (the solid curves are 
for INT, and the broken curves for BLS). It can be seen that a decrease of gw leads to no- 
ticeable flow destabilization. If interaction is not accounted for with growth of M~ from 
8 to 18 the influence of gw varies only a little. However, allowing for interaction leads 
to the situation where in hypersonic regimes destabilization from decrease of gw ewen in- 
creases, as proposed in [2]. Evidently, the temperature factor and the pressure gradient 
appreciably influence the intensity of vorticity in the vicinity of the outer edge of the 
boundary layer, where the critical layer is located for high M~. 

In conclusion, we note that in this investigation we did not account for the influence 
of the entropy layer nor the shock wave. It is entirely probable that consideration of 
these effects for very high M~ can lead to qualitatively new variations in the behavior of 
the boundary layer stability characteristics. 
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